JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

MicroRNAs and toll-like receptor/interleukin-1 receptor signaling.

The discovery of miRNAs has revolutionized the way we examine the genome, RNA products, and the regulation of transcription and translation. Their ability to modulate protein expression through mRNA degradation and translation repression resulted in avid scientific interest in miRNAs over the past decade. This research has led to findings that indicate miRNAs can regulate an array of cellular functions such as cellular apoptosis, proliferation, differentiation, and metabolism. Specifically, the capability of miRNAs to finely-tune gene expression naturally lends itself to immune system regulation which requires precise control for proper activity. In fact, abnormal miRNAs expression is often seen with inflammatory disorders like rheumatoid arthritis, systemic lupus erthematosus, experimental autoimmune encephalomyelitis, and inflammatory cancers. As a result, research investigating miRNAs modulation of immune cell proliferation, differentiation, and cellular signaling has yielded fruitful results. Specifically, in this review, we will examine the impact of miRNAs on toll-like receptor (TLRs) and interleukin-1β (IL-1β) signaling, which are integral in the proper functioning of the innate immune system. These signaling pathways share several key downstream signaling adaptors and therefore produce similar downstream effects such as the production of pro-inflammatory cytokines, chemokines, and interferons. This review will examine in depth the specific interactions of miRNAs with receptors, adaptor molecules, and regulator molecules within these cellular pathways. In addition, we will discuss the modulation of miRNAs' expression by TLR and IL-1R signaling through positive and negative feedback loops.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app