JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Crosslinks in the cell wall of budding yeast control morphogenesis at the mother-bud neck.

Journal of Cell Science 2012 December 2
Previous work has shown that, in cla4Δ cells of budding yeast, where septin ring organization is compromised, the chitin ring at the mother-daughter neck becomes essential for prevention of neck widening and for cytokinesis. Here, we show that it is not the chitin ring per se, but its linkage to β(1-3)glucan that is required for control of neck growth. When in a cla4Δ background, crh1Δ crh2Δ mutants, in which the chitin ring is not connected to β(1-3)glucan, grew very slowly and showed wide and growing necks, elongated buds and swollen cells with large vacuoles. A similar behavior was elicited by inhibition of the Crh proteins. This aberrant morphology matched that of cla4Δ chs3Δ cells, which have no chitin at the neck. Thus, this is a clear case in which a specific chemical bond between two substances, chitin and glucan, is essential for the control of morphogenesis. This defines a new paradigm, in which chemistry regulates growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app