Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Different binding property of STIM1 and its novel splice variant STIM1L to Orai1, TRPC3, and TRPC6 channels.

Stromal interaction molecule 1 (STIM1) is the endoplasmic reticulum (ER) Ca(2+) sensor to control ER Ca(2+) levels. A recent study has shown that STIM1L, a new splice variant of STIM1, is expressed in various tissues of rodent and in human skeletal muscle, and that the interaction of STIM1L with actin filament allows rapid activation of store-operated Ca(2+) entry (SOCE) mediated through Orai1 channels. Here, we characterize mRNA expression and function of human STIM1 and STIM1L, and compare their binding property to Orai1 functioning as store-operated Ca(2+) channels (SOCCs), and TRPC3 (transient receptor potential canonical 3) and TRPC6 channels functioning as endothelin type A receptor (ET(A)R)-operated Ca(2+) channels (ROCCs). Although mRNA for STIM1 was ubiquitously expressed in human tissues, STIM1L was detected only in skeletal muscle. STIM1L augmented thapsigargin- and endothelin-1-induced SOCE more strongly than STIM1 in human embryonic kidney 293 cells stably expressing ET(A)R, whereas, it tends to suppress ET(A)R-operated Ca(2+) entry (ROCE) via TRPC3 and TRPC6 more strongly than STIM1. Coimmunoprecipitation experiments have revealed that when compared with STIM1, STIM1L binds more abundantly to Orai1 and also to TRPC3 and TRPC6. These results suggest that the higher binding capacity of STIM1L to SOCCs and ROCCs plays an important role in the regulation of Ca(2+) signaling such as the augmentation of SOCE via Orai1 and the inhibition of ROCE via TRPC3 and TRPC6.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app