JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

ER stress increases StarD5 expression by stabilizing its mRNA and leads to relocalization of its protein from the nucleus to the membranes.

StarD5 belongs to the StarD4 subfamily of steroidogenic acute regulatory lipid transfer (START) domain proteins. In macrophages, StarD5 is found in the cytosol and maintains a loose association with the Golgi. Like StarD1 and StarD4, StarD5 is known to bind cholesterol. However, its function and regulation remain poorly defined. Recently, it has been shown that its mRNA expression is induced in response to different inducers of endoplasmic reticulum (ER) stress. However, the molecular mechanism(s) involved in the induction of StarD5 expression during ER stress is not known. Here we show that in 3T3-L1 cells, the ER stressor thapsigargin increases intracellular free cholesterol due to an increase in HMG-CoA reductase expression. Activation of StarD5 expression is mediated by the transcriptional ER stress factor XBP-1. Additionally, the induction of ER stress stabilizes the StarD5 mRNA. Furthermore, StarD5 protein is mainly localized in the nucleus, and upon ER stress, it redistributes away from the nucleus, localizing prominently to the cytosol and membranes. These results reveal the increase in StarD5 expression and protein redistribution during the cell protective phase of the ER stress, suggesting a role for StarD5 in cholesterol metabolism during the ER stress response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app