JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The submitochondrial distribution of ubiquinone affects respiration in long-lived Mclk1+/- mice.

Journal of Cell Biology 2012 October 16
Mclk1 (also known as Coq7) and Coq3 code for mitochondrial enzymes implicated in the biosynthetic pathway of ubiquinone (coenzyme Q or UQ). Mclk1(+/-) mice are long-lived but have dysfunctional mitochondria. This phenotype remains unexplained, as no changes in UQ content were observed in these mutants. By producing highly purified submitochondrial fractions, we report here that Mclk1(+/-) mice present a unique mitochondrial UQ profile that was characterized by decreased UQ levels in the inner membrane coupled with increased UQ in the outer membrane. Dietary-supplemented UQ(10) was actively incorporated in both mitochondrial membranes, and this was sufficient to reverse mutant mitochondrial phenotypes. Further, although homozygous Coq3 mutants die as embryos like Mclk1 homozygous null mice, Coq3(+/-) mice had a normal lifespan and were free of detectable defects in mitochondrial function or ubiquinone distribution. These findings indicate that MCLK1 regulates both UQ synthesis and distribution within mitochondrial membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app