Add like
Add dislike
Add to saved papers

Foot and Knee Behaviour During Gait in Response to the Use of Additional Means of Treatment in Cerebral Palsied Children

BACKGROUND: Physiological human gait is characterized by tree-dimensional pelvis movements, which make that gait is smooth and does not require excessive energy expenditure. In children with cerebral palsy determinants of the pelvis may be affected, mainly due to pathological afferent synergisms. Therefore many specialists is looking for ways to improve this situation. The aim of this study was to verify whether the use of botulinium toxin or inhibitive casts affects the kinematic parameters of the pelvis during the gait of children with hemiparetic form of cerebral palsy.

MATERIAL AND METHODS: The study involved 34 hemiparetic children with cerebral palsy aged 7-14 years who reached the capacity of walking. All were improving by neurodevelop-mental treatment according to NDT-Bobath method. Two groups were created. In the first group inhibiting casting was used in 16 children. In the second group botulinium toxin was injected in 18 children. Gait analysis was performed before and after using those type of treatment. Ultrasonic CMS-HS system (Zebris) was used for three dimensional gait analysis.

RESULTS: Despite of the characteristic for hemiplegic gait pattern asymmetry, various ab-normalities of pelvis kinematic parameters were observed. Gait symmetry was improved aafter the treatment. Using inhibiting casts also improved kinematic parameters of the pelvis, especially in those children who are found deficit of decreasing and rotation of the pelvis.

CONCLUSIONS: 1) The use of Btx-A or inhibitive casts results in improving temporal- spatial parameters of gait of cerebral palsied children with hemiparesis. 2) The improvement of kinematic pelvis parameters are obtained through the use of inhibitive casts, while the use of Btx-A does not have a significant impact on them.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app