Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The PmrAB system-inducing conditions control both lipid A remodeling and O-antigen length distribution, influencing the Salmonella Typhimurium-host interactions.

The Salmonella enterica serovar Typhimurium lipopolysaccharide consisting of covalently linked lipid A, non-repeating core oligosaccharide, and the O-antigen polysaccharide is the most exposed component of the cell envelope. Previous studies demonstrated that all of these regions act against the host immunity barrier. The aim of this study was to define the role and interaction of PmrAB-dependent gene products required for the lipopolysaccharide component synthesis or modification mainly during the Salmonella infection. The PmrAB two-component system activation promotes a remodeling of lipid A and the core region by addition of 4-aminoarabinose and/or phosphoethanolamine. These PmrA-dependent activities are produced by activation of ugd, pbgPE, pmrC, cpta, and pmrG transcription. In addition, under PmrA regulator activation, the expression of wzz(fepE) and wzz(st) genes is induced, and their products are required to determine the O-antigen chain length. Here we report for the first time that Wzz(st) protein is necessary to maintain the balance of 4-aminoarabinose and phosphoethanolamine lipid A modifications. Moreover, we demonstrate that the interaction of the PmrA-dependent pbgE(2) and pbgE(3) gene products is important for the formation of the short O-antigen region. Our results establish that PmrAB is the global regulatory system that controls lipopolysaccharide modification, leading to a coordinate regulation of 4-aminoarabinose incorporation and O-antigen chain length to respond against the host defense mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app