JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of neuronal and endothelial nitric oxide synthase by anabolic-androgenic steroid in skeletal muscles.

Anabolic-androgenic steroids (AAS) and exercise share comparable effects on myogenic differentiation, force development, fiber growth and skeletal muscle plasticity. The participation of nitric oxide synthase (NOS) on these effects was only demonstrated in response to exercise. Using immunohistochemistry and western blotting we examined the effect of AAS on the expression of NOS I and III isoforms in three muscles, distinct metabolically and physiologically: soleus (SOL), tibialis anterioris (TA) and gastrocnemius (GAS). Mice with a lipid profile akin to humans were used. Sedentary mice (Sed-C) or exercised, submitted to six-weeks of aerobic treadmill running (one hour/day, 5 days/week) were administered mesterolone (Sed-M and Ex-M, respectively) or gum arabic (vehicle, Ex-C) during the last three weeks, three alternate days per week. Consistently, The TA showed the strongest labeling and the SOL the weakest with NOS III predominating over NOS I. Mesterolone administered to sedentary mice (Sed-C x Sed-M) significantly upregulated NOS I in TA and SOL and NOS III in all three muscles. Mesterolone administered to exercised mice (Ex-C x Ex-M) upregulated NOS I in all three muscles and NOS III in TA and SOL. The exercise to mesterolone-treated mice (Sed-M x Ex-M) produced a strong increase in NOS I expression in GAS; in contrast it antagonized the mesterolone-induced upregulation of NOS I in TA muscle and NOS III in SOL and GAS. The data show nitric oxide (NO) as a potential signaling mediator of AAS effects in skeletal muscle and that NOS I and NOS III upregulations were muscle phenotype-specific. These may be regarded as an indication of the complex NOS/NO signaling mechanism related with AAS effects vs. metabolic/physiological muscle characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app