Add like
Add dislike
Add to saved papers

Combined crossed beam and theoretical studies of the N(2D) + C2H4 reaction and implications for atmospheric models of Titan.

The dynamics of the H displacement channels in the reaction N((2)D) + C(2)H(4) have been investigated by the crossed molecular beam technique with mass spectrometric detection and time-of-flight analysis at two different collision energies (17.2 and 28.2 kJ/mol). The interpretation of the scattering results is assisted by new electronic structure calculations of stationary points and product energetics for the C(2)H(4)N ground state doublet potential energy surface. RRKM statistical calculations have been performed to derive the product branching ratio under the conditions of the present experiments and of the atmosphere of Titan. Similarities and differences with respect to a recent study performed in crossed beam experiments coupled to ionization via tunable VUV synchrotron radiation are discussed (Lee, S.-H.; et al. Phys. Chem. Chem. Phys.2011, 13, 8515-8525). Implications for the atmospheric chemistry of Titan are presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app