JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Separation patterns between Brazilian nut and reversed Brazilian nut of a binary granular system.

This paper studies the segregation behavior of binary granular particles with diameters at approximately 10:1 in a vertically vibrated container. An array of transitional separation patterns between reversed Brazilian nut (RBN) and Brazilian nut (BN) separations are observed, with their geometrical features carefully measured. The binary particle system develops into either a stable separation pattern when f and Γ are relatively low or an oscillating pattern when f and Γ are relatively high. We regard these patterns as different phases, in which the stable patterns can be divided into phases of RBN, RBN transitional (RBNT), BNT, and BN. A phase parameter λ between-1 and 1 is defined to describe the separation patterns based on the mass center height difference in large and small particles. By drawing f-Γ-λ phase diagrams, the system's tendency toward BN separation was found to increase with f and decrease with Γ. Furthermore, the range of the tendency toward BN separation expands when the size of small particles rises. As the total mass of the small particles increases, the system's tendency toward RBN separation is enhanced. Abnormal points are also observed in the stable phase regions, and the oscillating phase shifts among the four stable phases with time. These stable phases can be explained via an analysis of the distribution of the dissipation energy, whereas the mechanism of the oscillating phase remains to be discovered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app