Add like
Add dislike
Add to saved papers

The potential role of ozone in ameliorating the age-related biochemical changes in male rat cerebral cortex.

Biogerontology 2012 December
Controlled ozone (O(3)) administration is known to promote oxidative preconditioning and, thus, may reverse chronic oxidative stress that accompanies aging. Therefore, the present work was undertaken to study the potential role of O(3) in ameliorating certain age-related biochemical changes represented by impaired activities of inner mitochondrial membrane enzymes, compromised energy production and increased oxidative burden in male rat cerebral cortex. Prophylactic administration of O(3)-O(2) mixture to 3 month-old rats, at an intrarectal dose of 0.6 mg O(3) kg(-1) body weight twice/week for 3 months then once/week until the age of 15 months, normalized reduced glutathione content, adenosine triphosphate/adenosine diphosphate ratio, mitochondrial superoxide dismutase (SOD) and complex IV (cytochrome-c oxidase) activities, improved glutathione redox index (GSHRI), complex I (NADH-ubiquinone oxidoreductase) and mitochondrial nitric oxide synthase (mtNOS) activities, and attenuated the rise in malondialdehyde (MDA) and mitochondrial protein carbonyl levels. On the other hand, therapeutic administration of the same dose of O(3)-O(2) mixture to 14 month-old rats three times/week for 1 month, reduced mitochondrial protein carbonyl level only. Other favorable effects, including normalization of Na,K-adenosine triphosphatase (Na,K-ATPase) activity and reduction in lipofuscin level in the prophylactic group, as well as improvement in mitochondrial SOD and complex I activities with a decrease in total MDA level in the therapeutic group, were comparable to the effects observed in the corresponding O(2)-treated control groups. In conclusion, the present study revealed that prophylactic administration of O(3)-O(2) mixture provided better amelioration of age-related cerebrocortical alterations by combining the advantages of both O(3) and O(2) therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app