COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nanoemulsions containing octyl methoxycinnamate and solid particles of TiO₂: preparation, characterization and in vitro evaluation of the solar protection factor.

The objective of this work was to develop and evaluate the physical-chemical properties of oil-in-water nanoemulsions for application as nanocosmetics for sun protection. Oil-in-water dispersions were processed by ultrasound (US) to obtain small emulsion droplets. These emulsions were obtained in the presence of commercial nonionic surfactants based on polyoxides and avocado oil as the oil phase. The US generated small but unstable droplets. This problem was solved by using a different surfactant, with a longer ethylene oxide chain, able to promote stabilization by steric mechanisms. The light scattering technique was used to characterize the nanoemulsions by their dispersed droplets' size, size distribution and variation of distribution with time (stability). Chemical and physical sunscreens - octyl methoxycinnamate (OMC) and titanium dioxide (TiO₂), respectively - were added to the stable system. The anti-UVB activity of the nanoemulsions and their components were evaluated by the method of Mansur et al. (1986) and spectral transmittance. The solar protection factor (SPF) was proportional to the OMC and TiO₂ concentrations. The in vitro OMC release was evaluated, and the presence of TiO₂ in the nanoemulsion did not affect the release profile, which showed the diffusion-dependent kinetics of the active ingredient in the formulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app