JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Occurrence of IMP-8, IMP-10, and IMP-13 metallo-β-lactamases located on class 1 integrons and other extended-spectrum β-lactamases in bacterial isolates from Tunisian rivers.

BACKGROUND: Antibiotic-resistant bacteria have been surveyed widely in water bodies, but few studies have determined the diversity of antibiotic-resistant bacteria in river waters. This study was undertaken to investigate the origin of resistance among polluted river bacterial isolates in Tunisia.

METHODS: In this study 128 isolates resistant to β-lactam antibiotics were obtained from 2 polluted rivers in the north of Tunisia. Isolates were identified using Phoenix phenotyping criteria. The occurrence of bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), bla(VIM), and bla(IMP) was studied by polymerase chain reaction (PCR) amplification and sequencing, and the genetic relatedness of the 16 IMP-producing Klebsiella pneumoniae isolates was analyzed by comparison of XbaI pulsed-field gel electrophoresis (PFGE) profiles.

RESULTS: Using Phoenix phenotyping criteria, diverse genera of bacteria were identified with different rates of prevalence and with different minimum inhibitory concentrations against different antibiotics. The occurrence of bla(TEM), bla(SHV), bla(CTXM), bla(CMY), bla(VIM), and bla(IMP) genes was confirmed. The DNA sequences upstream and downstream of bla(IMP) genes were determined, revealing that all IMP-encoding genes constituted the first cassette of class 1 integrons, followed by aacA gene cassettes encoding aminoglycoside resistance. Comparison of PFGE profiles showed that only 2 of the isolates were clonal, the other 14 displaying unique profiles. The bla(CTX-M) gene was the most dominant of the extended-spectrum β-lactamase (ESBL) genes, while the bla(TEM) gene was the second-most dominant.

CONCLUSION: The discovery of highly diverse ESBL-producing bacteria and metallo-β-lactamases, particularly bla(IMP), in polluted river water raises alarms with regard to the potential dissemination of antibiotic-resistant bacteria in communities through river environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app