Add like
Add dislike
Add to saved papers

Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury.

UNLABELLED: The role of the adaptive immune system in adverse drug reactions that target the liver has not been defined. For flucloxacillin, a delay in the reaction onset and identification of human leukocyte antigen (HLA)-B*57:01 as a susceptibility factor are indicative of an immune pathogenesis. Thus, we characterize flucloxacillin-responsive CD4+ and CD8+ T cells from patients with liver injury and show that naive CD45RA+CD8+ T cells from volunteers expressing HLA-B*57:01 are activated with flucloxacillin when dendritic cells present the drug antigen. T-cell clones expressing CCR4 and CCR9 migrated toward CCL17 and CCL 25, and secreted interferon-gamma (IFN-γ), T helper (Th)2 cytokines, perforin, granzyme B, and FasL following drug stimulation. Flucloxacillin bound covalently to selective lysine residues on albumin in a time-dependent manner and the level of binding correlated directly with the stimulation of clones. Activation of CD8+ clones with flucloxacillin was processing-dependent and restricted by HLA-B*57:01 and the closely related HLA-B*58:01. Clones displayed additional reactivity against β-lactam antibiotics including oxacillin, cloxacillin, and dicloxacillin, but not abacavir or nitroso sulfamethoxazole.

CONCLUSION: This work defines the immune basis for flucloxacillin-induced liver injury and links the genetic association to the iatrogenic disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app