Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Delay of iris flower senescence by cytokinins and jasmonates.

It is not known whether tepal senescence in Iris flowers is regulated by hormones. We applied hormones and hormone inhibitors to cut flowers and isolated tepals of Iris × hollandica cv. Blue Magic. Treatments with ethylene or ethylene antagonists indicated lack of ethylene involvement. Auxins or auxin inhibitors also did not change the time to senescence. Abscisic acid (ABA) hastened senescence, but an inhibitor of ABA synthesis (norflurazon) had no effect. Gibberellic acid (GA3 ) slightly delayed senescence in some experiments, but in other experiments it was without effect, and gibberellin inhibitors [ancymidol or 4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate (AMO-1618)] were ineffective as well. Salicylic acid (SA) also had no effect. Ethylene, auxins, GA3 and SA affected flower opening, therefore did reach the flower cells. Jasmonates delayed senescence by about 2.0 days. Similarly, cytokinins delayed senescence by about 1.5-2.0 days. Antagonists of the phosphatidylinositol signal transduction pathway (lithium), calcium channels (niguldipine and verapamil), calmodulin action [fluphenazine, trifluoroperazine, phenoxybenzamide and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide hydrochloride (W-7)] or protein kinase activity [1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8) and N-(2-aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9)] had no effect on senescence, indicating no role of a few common signal transduction pathways relating to hormone effects on senescence. The results indicate that tepal senescence in Iris cv. Blue Magic is not regulated by endogenous ethylene, auxin, gibberellins or SA. A role of ABA can at present not be excluded. The data suggest the hypothesis that cytokinins and jasmonates are among the natural regulators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app