Journal Article
Review
Add like
Add dislike
Add to saved papers

Molecular basis of erythrocyte adhesion to endothelial cells in diseases.

Red blood cell (RBC) adhesion to endothelium can be studied in static and flow conditions. Increased RBC adhesion was first described in sickle cell disease. Several molecules were shown to be involved in this phenomenon: VCAM-1, α4β1, Lu/BCAM, ICAM-4. In malaria, Plasmodium falciparum erythrocyte membrane protein1 binds to ICAM-1, PECAM-1 and facilitates the parasite dissemination. In diabetes mellitus augmented RBC adhesion is correlated to the severity of vascular complications. Glycated RBC band3 reacts with the endothelial Receptor for Advanced Glycation End products (RAGE). RAGE engagement induced endothelial cell dysfunction. In patients with Polycythemia Vera (PV), the most frequent myeloproliferative disorder, constitutive phosphorylation of RBC Lu/BCAM is responsible for an increased adhesion to endothelial cell laminin. Retinal vein occlusion (RVO) is a common cause of permanent visual loss. Spontaneous growth of erythroid precursors was observed in more than 25% of patients. RBC adhesion was enhanced and correlated to phosphatidyl serine (PS) expression on RBC. Anti-PS receptor blocked RVO RBC adhesion indicating that the counterpart of RBC PS is PS endothelial cell receptor. Erythrocyte adhesion is mediated by different molecule abnormalities in different diseases but is associated to a higher risk of thrombosis and vascular complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app