Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology.

Hydrogen production from glucose via single-stage photofermentation was examined with the photosynthetic bacterium Rhodobacter capsulatus JP91 (hup-). Response surface methodology with Box-Behnken design was used to optimize the independent experimental variables of glucose concentration, glutamate concentration and light intensity, as well as examining their interactive effects for maximization of molar hydrogen yield. Under optimal condition with a light intensity of 175W/m(2), 35mM glucose, and 4.5mM glutamate, a maximum hydrogen yield of 5.5 (±0.15)molH(2)/molglucose, and a maximum nitrogenase activity of 246 (±3.5)nmolC(2)H(4)/ml/min were obtained. Densitometric analysis of nitrogenase Fe-protein expression under different conditions showed significant variation in Fe-protein expression with a maximum at the optimized central point. Even under optimum conditions for hydrogen production, a significant fraction of the Fe-protein was found in the ADP-ribosylated state, suggesting that further improvement in yields might be possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app