JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Photoperiod-gonadotropin mismatches induced by treatment with acyline or FSH in Siberian hamsters: impacts on ovarian structure and function.

Reproduction 2012 November
Many seasonal breeders time their reproductive efforts to specific times of the year to ensure adequate resources for the production and care of young. For long-day (LD) breeders, females born before the summer solstice (LDs) reach sexual maturity quickly and often breed that same year, whereas females born after the summer solstice (short days (SDs)) may delay reproductive development to the following spring when environmental conditions are favorable for reproduction. In Siberian hamsters, development in SD is associated with structural and functional differences in the ovary compared with females held in LD, including a greater number of primordial follicles and an abundance of hypertrophied granulosa cells (HGCs), which are immunoreactive for anti-Müllerian hormone. The goal of this study was to determine whether SD-induced gonadotropin suppression is responsible for these phenotypic differences. Gonadotropin levels were suppressed in LD hamsters using the GNRH antagonist acyline. Conversely, to determine whether the SD ovarian phenotype is completely reversed by gonadotropin stimulation, recombinant human FSH (rhFSH) was administered. Our treatments were successful in mimicking FSH concentrations of the opposite photoperiod, but they did not produce a comparable change in the ovarian phenotype. Most notable was the lack of HGCs in the ovaries of acyline-treated LD females. Similarly, HGCs were maintained in the ovaries of SD females treated with rhFSH. Our data suggest that gonadotropins alone do not account for the SD ovarian phenotype. Future studies will determine whether SD-induced changes in other factors underlie these phenotypic changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app