JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Different protein expression patterns associated with polycystic ovary syndrome in human follicular fluid during controlled ovarian hyperstimulation.

Polycystic ovary syndrome (PCOS) is one of the most common causes of anovulatory infertility, affecting 5-10% of females during their reproductive life. Currently the pathology of PCOS is largely unknown. To identify the differential protein expression in follicular fluids from PCOS and normal subjects during controlled ovarian hyperstimulation, we performed an initial proteomic study including two-dimensional gel electrophoresis (2DE) analysis and mass spectroscopy, and confirmed results by western blot. Thirty-two protein spots were shown to be significantly differentially expressed between PCOS and normal follicular fluids, of which 20 unique proteins were identified to be associated with cellular metabolism and physiological processes; 13 of these proteins were upregulated while seven were downregulated in PCOS follicular fluids. Western blotting analyses confirmed the differential expressions for three randomly selected proteins, i.e. upregulated α1-antitrypsin, apolipoprotein A-I and transferrin in follicular fluid from PCOS patients than normal controls. Furthermore, semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that mRNA levels of serine palmitoyltransferase 2, serine/threonine-protein kinase male germ cell-associated kinase (MAK) and DNA damage-regulated autophagy modulator protein 2 decreased significantly in granulosa cells of PCOS patients compared with normal samples. These results increase our understanding of PCOS and the identified genes may serve as candidate biomarkers to develop diagnostic and therapeutic tools.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app