Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Tissue-restricted transcription from a conserved intragenic CpG island in the Klf1 gene in mice.

Beyond Mendelian inheritance, an understanding of the complexities and consequences of the transfer of nonhereditary information to successive generations is at an early stage. Such epigenetic functionality is exemplified by DNA methylation and, as genome-wide high-throughput methodologies emerge, is increasingly being considered in the context of conserved intragenic and intergenic CpG islands that function as alternate sites of transcription initiation. Here we characterize an intragenic CpG island in exon 2 of the protein-coding mouse Klf1 gene, from which clustered transcription initiation sites yield positive-strand, severely truncated, capped and spliced RNAs. Expression from this CpG island in the testis begins between Postnatal Days 14-20, increases during development, and is temporally correlated with the maturation of secondary spermatocytes as they become the dominant cell population in the seminiferous epithelium. Only full-length KLF1-encoding mRNAs are detected in the hematopoietic tissue, spleen; thus, expression from the exon 2 CpG island is both developmentally regulated and tissue restricted. DNA methylation analysis indicates that spatiotemporal expression from the Klf1 CpG island is not associated with hypermethylation. Finally, our computational analysis from multiple species confirms intragenic transcription initiation and indicates that the KLF1 CpG island is evolutionarily conserved. Currently we have no evidence that these truncated RNAs can be translated via nonconventional mechanisms such as in-frame, conserved non-AUG-dependent Kozak consensus sequences; however, high-quality carboxyl-terminal antibodies will more effectively address this issue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app