Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A characterization of robust radiation therapy treatment planning methods-from expected value to worst case optimization.

Medical Physics 2012 August
PURPOSE: To characterize a class of optimization formulations used to handle systematic and random errors in radiation therapy, and to study the differences between the methods within this class.

METHODS: The class of robust methods that can be formulated as minimax stochastic programs is studied. This class generalizes many previously used methods, ranging between optimization of the expected and the worst case objective value. The robust methods are used to plan intensity-modulated proton therapy (IMPT) treatments for a case subject to systematic setup and range errors, random setup errors with and without uncertain probability distribution, and combinations thereof. As reference, plans resulting from a conventional method that uses a margin to account for errors are shown.

RESULTS: For all types of errors, target coverage robustness increased with the conservativeness of the method. For systematic errors, best case organ at risk (OAR) doses increased and worst case doses decreased with the conservativeness. Accounting for random errors of fixed probability distribution resulted in heterogeneous dose. The heterogeneities were reduced when uncertainty in the probability distribution was accounted for. Doing so, the OAR doses decreased with the conservativeness. All robust methods studied resulted in more robust target coverage and lower OAR doses than the conventional method.

CONCLUSIONS: Accounting for uncertainties is essential to ensure plan quality in complex radiation therapy such as IMPT. The utilization of more information than conventional in the optimization can lead to robust target coverage and low OAR doses. Increased target coverage robustness can be achieved by more conservative methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app