Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electrical spin injection into InN semiconductor nanowires.

Nano Letters 2012 September 13
We report on the conditions necessary for the electrical injection of spin-polarized electrons into indium nitride nanowires synthesized from the bottom up by molecular beam epitaxy. The presented results mark the first unequivocal evidence of spin injection into III-V semiconductor nanowires. Utilizing a newly developed preparation scheme, we are able to surmount shadowing effects during the metal deposition. Thus, we avoid strong local anisotropies that arise if the ferromagnetic leads are wrapping around the nanowire. Using a combination of various complementary techniques, inter alia the local Hall effect, we carried out a comprehensive investigation of the coercive fields and switching behaviors of the cobalt micromagnetic spin probes. This enables the identification of a range of aspect ratios in which the mechanism of magnetization reversal is single domain switching. Lateral nanowire spin valves were prepared. The spin relaxation length is demonstrated to be about 200 nm, which provides an incentive to pursue the route toward nanowire spin logic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app