Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study.

PURPOSE: Keratoconus disease or post-LASIK corneal ectasia are increasingly treated using UV-A/riboflavin-induced corneal collagen cross-linking (CXL). However, this treatment suffers from a lack of techniques to provide an assessment in real-time of the CXL effects. Here, we investigated the potential interest of corneal elasticity as a biomarker of the efficacy of this treatment.

METHODS: For this purpose, supersonic shear wave imaging (SSI) was performed both ex vivo and in vivo on porcine eyes before and after CXL. Based on ultrasonic scanners providing ultrafast frame rates (~30 kHz), the SSI technique generates and tracks the propagation of shear waves in tissues. It provides two- and three-dimensional (2-D and 3-D) quantitative maps of the corneal elasticity.

RESULTS: After CXL, quantitative maps of corneal stiffness clearly depicted the cross-linked area with a typical 200-μm lateral resolution. The CXL resulted in a 56% ± 15% increase of the shear wave speed for corneas treated in vivo (n = 4).

CONCLUSIONS: The in vivo CXL experiments performed on pigs demonstrated that the quantitative estimation of local stiffness and the 2-D elastic maps of the corneal surface provide an efficient way to monitor the local efficacy of corneal cross-linking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app