JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oxidative stress effect of dopamine on α-synuclein: electroanalysis of solvent interactions.

The interaction of dopamine (DA) and α-synuclein (α-S) can lead to protein misfolding and neuronal death triggered by oxidative stress relevant to the progression of Parkinson's disease (PD). In this study, interfacial properties associated with DA-induced α-S aggregation under various solution conditions (i.e., pH, ionic strength) were investigated in vitro. The electrochemical oxidation of tyrosine (Tyr) residues in α-S was detected in the presence of DA. DA concentration dependence was analyzed and found to significantly affect α-S aggregation pathways. At low pH, DA was shown to be stable and produced no observable difference in interfacial properties. Between pH 7 and 11, DA promoted α-S aggregation. Significant differences in oxidation current signals in response to high pH and ionic strength suggested the importance of initial interactions in the stabilization of toxic oligomeric structures and subsequent off-pathways of α-S. Our results demonstrate the importance of solution interactions with α-S and the unique information that electrochemical techniques can provide for the investigation of α-S aggregation at early stages, an important step toward the development of future PD therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app