JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of a new intimin/invasin-like protein in Yersinia pestis virulence.

A comprehensive TnphoA mutant library was constructed in Yersinia pestis KIM6 to identify surface proteins involved in Y. pestis host cell invasion and bacterial virulence. Insertion site analysis of the library repeatedly identified a 9,042-bp chromosomal gene (YPO3944), intimin/invasin-like protein (Ilp), similar to the Gram-negative intimin/invasin family of surface proteins. Deletion mutants of ilp were generated in Y. pestis strains KIM5(pCD1(+)) Pgm(-) (pigmentation negative)/, KIM6(pCD1(-)) Pgm(+), and CO92. Comparative analyses were done with the deletions and the parental wild type for bacterial adhesion to and internalization by HEp-2 cells in vitro, infectivity and maintenance in the flea vector, and lethality in murine models of systemic and pneumonic plague. Deletion of ilp had no effect on bacterial blockage of flea blood feeding or colonization. The Y. pestis KIM5 Δilp strain had reduced adhesion to and internalization by HEp-2 cells compared to the parental wild-type strain (P < 0.05). Following intravenous challenge with Y. pestis KIM5 Δilp, mice had a delayed time to death and reduced dissemination to the lungs, livers, and kidneys as monitored by in vivo imaging using a lux reporter system (in vivo imaging system [IVIS]) and bacterial counts. Intranasal challenge in mice with Y. pestis CO92 Δilp had a 55-fold increase in the 50% lethal dose ([LD(50)] 1.64 × 10(4) CFU) compared to the parental wild-type strain LD(50) (2.98 × 10(2) CFU). These findings identified Ilp as a novel virulence factor of Y. pestis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app