JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Low-frequency fluctuation in continuous real-time feedback of finger force: a new paradigm for sustained attention.

OBJECTIVE: Behavioral studies have suggested a low-frequency (0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time. Conventional task designs for functional magnetic resonance imaging (fMRI) studies are not appropriate for frequency analysis. The present study aimed to propose a new paradigm, real-time finger force feedback (RT-FFF), to study the brain mechanisms of sustained attention and neurofeedback.

METHODS: We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults (19 males; mean age, 22.3 years). Two fMRI sessions, in RT-FFF and sham finger force feedback (S-FFF) states, were acquired (TR 2 s, Siemens Trio 3-Tesla scanner, 8 min each, counter-balanced). Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz.

RESULTS: Frequency analysis of the behavioral data showed lower amplitude in the low-frequency band (0.004-0.104 Hz) but higher amplitude in the high-frequency band (27.02-125 Hz) in the RT-FFF than the S-FFF states. The mean finger force was not significantly different between the two states. fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation (fALFF) in the S-FFF than in the RT-FFF state in the visual cortex, but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus, the superior frontal gyrus, and the default mode network.

CONCLUSION: The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention. The fMRI results suggest that a distributed network including visual, motor, attentional, and default mode networks may be involved in sustained attention and/or real-time feedback. This paradigm may be helpful for future studies on deficits of attention, such as attention deficit hyperactivity disorder and mild traumatic brain injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app