Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Integration of on-chip isotachophoresis and functionalized hydrogels for enhanced-sensitivity nucleic acid detection.

Analytical Chemistry 2012 August 8
We introduce an on-chip electrokinetic assay to perform high-sensitivity nucleic acid (NA) detection. This assay integrates electrokinetic sample focusing using isotachophoresis (ITP) with a background signal-removal strategy that employs photopatterened, DNA-functionalized hydrogels. In this multistage assay, ITP first enhances hybridization kinetics between target NAs and end-labeled complementary reporters. After enhanced hybridization, migration through a DNA-functionalized hydrogel region removes excess reporters through affinity interactions. We demonstrate our assay on microRNAs, an important class of low-abundance biomarkers. The assay exhibits 4 orders of magnitude dynamic range, near 1 pM detection limits starting from less than 100 fg of microRNA, and high selectivity for mature microRNA sequences, all within a 10 min run time. This new microfluidic framework provides a unique quantitative assay for NA detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app