CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Retinal on-pathway deficit in congenital disorder of glycosylation due to phosphomannomutase deficiency.

OBJECTIVE: To describe novel electroretinographic (ERG) findings associated with congenital disorder of glycosylation due to phosphomannomutase deficiency (PMM2-CDG) (previously known as congenital disorder of glycosylation type 1a).

METHODS: Two male siblings with genetically confirmed PMM2-CDG underwent full-field ERG to a range of scotopic and photopic flash luminances that extended the International Society for Clinical Electrophysiology of Vision standard protocol and included scotopic 15-Hz flicker and photopic prolonged on-off stimulation.

RESULTS: Photopic prolonged ERGs were profoundly electronegative with absent b-waves but preserved oscillatory potentials. Prolonged off-responses and off-oscillatory potentials were preserved. Transient full-field photopic ERGs revealed a broad a-wave and narrow b-wave, and the photopic 30-Hz flicker ERG had a sawtooth waveform. The scotopic b-waves of both cases were attenuated to the fifth percentile, whereas scotopic a-wave amplitudes were at the 50th to 75th percentile, giving a reduced a:b ratio. The scotopic a-wave waveform was well defined to bright flash luminance. The number of scotopic oscillatory potentials was preserved, although amplitudes were smaller than average. Scotopic 15-Hz flicker ERGs were evident to a range of flash luminances and showed an expected phase cancellation between -1.5 and -1.0 log scotopic td (troland) • s, but phase increased only for the fast rod pathway.

CONCLUSIONS: We find, for the first time to our knowledge, an association of PMM2-CDG with a selective on-pathway dysfunction in the retina. This ERG phenotype localizes the site of retinal dysfunction to the on-bipolar synapse with photoreceptors. Modeling the unusual combination of ERG findings helps our understanding of the role of N -glycosylation at this synapse and provides a focus for future studies of potential intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app