Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Annexin A1 modulates macula densa function by inhibiting cyclooxygenase 2.

Annexin A1 (ANXA1) exerts anti-inflammatory effects through multiple mechanisms including inhibition of prostaglandin synthesis. Once secreted, ANXA1 can bind to G protein-coupled formyl peptide receptors (Fpr) and activate diverse cellular signaling pathways. ANXA1 is known to be expressed in cells of the juxtaglomerular apparatus, but its relation to the expression of cyclooxygenase 2 (COX-2) in thick ascending limb and macula densa cells has not been elucidated. We hypothesized that ANXA1 regulates the biosynthesis of COX-2. ANXA1 abundance in rat kidney macula densa was extensively colocalized with COX-2 (95%). Furosemide, an established stimulus for COX-2 induction, caused enhanced expression of both ANXA1 and COX-2 with maintained colocalization (99%). In ANXA1-deficient mice, COX-2-positive cells were more numerous than in control mice (+107%; normalized to glomerular number; P < 0.05) and renin expression was increased (+566%; normalized to glomerular number; P < 0.05). Cultured macula densa cells transfected with full-length rat ANXA1 revealed downregulation of COX-2 mRNA (-59%; P < 0.05). Similarly, treatment with dexamethasone suppressed COX-2 mRNA in the cells (-49%; P < 0.05), while inducing ANXA1 mRNA (+56%; P < 0.05) and ANXA1 protein secretion. Inhibition of the ANXA-1 receptor Fpr1 with cyclosporin H blunted the effect of dexamethasone on COX-2 expression. These data show that ANXA1 exerts an inhibitory effect on COX-2 expression in the macula densa. ANXA1 may be a novel intrinsic modulator of renal juxtaglomerular regulation by inhibition of PGE(2) synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app