JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multilayered silicone oil droplets of narrow size distribution: preparation and improved deposition on hair.

Silicone oil droplets have limited deposition on hair due to electrostatic repulsion with negative surface charge of hair substrates. Aiming to improve silicone deposition on hair substrates, surface properties of uniform-sized silicone oil droplets (produced by membrane emulsification) were modified using layer-by-layer electrostatic deposition. By using this method, silicone oil droplets were coated with large molecular weight polymers, i.e. quaternized chitosan and alginate, and low molecular weight compounds, i.e. diallyl dimethyl ammonium chloride and glycerol to obtain six alternate layers of different surface charges. It was found that the dispersion of coated silicone oil droplets of narrow size distribution exhibited much improved mechanical strength and increased viscosity against shear compared to uncoated droplets. These multilayered silicone oil droplets were then added into model shampoos and conditioners to study the effect of charge and molecular weight of coating materials on silicone oil deposition on hair. The results clearly demonstrated that surface charge and charge density have significant influence on silicone oil deposition. Droplets with higher positive charge density resulted in increased deposition of silicone on hair due to electrostatic attraction. Characterization of the hair surface potential, wetting properties and friction certified the results further, showing reduced friction, decreased wetting angle and positive surface potential of high density positively charged silicone oil droplets. Therefore, LBL surface modification combined with membrane emulsification is a promising method for preparing multilayered silicone oil droplets of increased mechanical strength, viscosity and deposition on hair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app