JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of low-intensity, elastic band resistance exercise combined with blood flow restriction on muscle activation.

We examined the effects of blood flow-restricted, low-intensity resistance exercise (termed kaatsu) using an elastic band for resistance on muscle activation. Nine men performed triceps extension and biceps flexion exercises (four sets respectively) using an elastic band for resistance with blood flow restriction (BFR) or CON (unrestricted blood flow). During a BFR session, subjects wore pressure cuffs inflated to 170-260 mmHg on the proximal region of both arms. Surface electromyography (EMG) was recorded from the triceps brachii and biceps brachii muscles, and mean integrated EMG (iEMG) was analyzed. Blood lactate concentration was obtained before (Pre) and immediately after two exercises (Post). During triceps extension and biceps flexion exercises, muscle activation increased progressively (P < 0.05) under BFR (46% and 69%, respectively) but not under CON (12% and 23%, respectively). Blood lactate concentration at Post was higher (P < 0.05) under BFR than under CON (3.6 and 2.1 mmol/L, respectively). Blood lactate concentration at Post was significantly correlated with increased iEMG in both triceps extension (r = 0.65, P < 0.01) and biceps flexion exercises (r = 0.52, P < 0.05). We conclude that kaatsu training using elastic bands for resistance enhances muscle activation and may be an effective method to promote muscle hypertrophy in older adults or patients with a low level of activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app