JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma.

BACKGROUNDS & AIMS: Cholangiocarcinoma (CCA) is highly fatal because of early invasion, widespread metastasis, and lack of an effective therapy. Migration, invasion, and metastasis of CCA cells are modulated by signals received from stromal cells. The SDF-1-CXCR4 axis emerges as a pivotal regulator of migration and survival of different tumor cells. The aim of the present study was to characterize the interaction between CCA cells and human hepatic stellate cells (hHSC) focusing on the role of SDF-1.

METHODS: The intrahepatic CCA cell line HuCCT-1 and primary hHSC were used for this study. RNA expression was examined by RTQ-PCR and protein expression by Western blotting. Immunofluorescence microscopy and immunohistochemistry were also employed. Migration of CCA cells was assessed using modified Boyden chambers.

RESULTS: CXCR4 was clearly expressed in CCA cells of human CCA liver specimens. SDF-1 and hHSC conditioned medium (CM) promoted HuCCT-1 cell migration, which was abrogated by pre-incubation with AMD3100, a non-peptide antagonist of the CXCR4 receptor. In addition, HuCCT-1 cells silenced for CXCR4 did not migrate in presence of SDF-1. Both P-ERK and p-AKT were implicated in HuCCT-1 migration and showed a biphasic trend under stimulation of SDF-1. Finally, SDF-1 induced apoptotic rescue of HuCCT-1 cells by binding to CXCR4.

CONCLUSIONS: Our study demonstrates that CCA cells migration and survival are modulated by the crosstalk between SDF-1, released by hHSC, and HuCCT-1 cells bearing CXCR4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app