Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation.

Oncogene 2013 May 3
The TRC8 gene, which was previously shown to be disrupted by a 3;8 chromosomal translocation in hereditary kidney cancer, encodes for an endoplasmic reticulum-resident E3 ligase. Studies have shown that TRC8 exhibits a tumor-suppressive effect through its E3-ligase activity. Therefore, the identification of its physiological substrates will provide important insights into the molecular mechanism underlying TRC8-mediated tumor suppression. Here we show that TRC8 targets heme oxygenase-1 (HO-1), an antioxidant enzyme highly expressed in various cancers, for ubiquitination and degradation. Ectopic TRC8 expression suppresses HO-1-induced cancer cell growth and migration/invasion. Conversely, HO-1 depletion reduced the tumorigenic and invasive capacities promoted by TRC8 knockdown. HO-1 downregulation in renal carcinoma cells induces a mitotic delay at G2/M phase by increasing the intracellular reactive oxygen species and the DNA-damage-induced checkpoint activation. These results highlight the tumorigenic role of HO-1 and the importance of TRC8-mediated HO-1 degradation in the control of cancer growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app