Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vitro differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs), derived from Wharton's jelly, into choline acetyltransferase (ChAT)-positive cells.

We isolated and expanded fibroblast-like cells from the Wharton's jelly of human umbilical cord successfully. Immunocytochemistry showed that they were positive for several markers of mesenchymal stem cells (CD73, CD90, and CD105) and integrin markers (CD29 and CD44), but negative for a hematopoietic cell maker (CD45) and an endothelial cell marker (CD31). Their differentiation into osteocytes and adipocytes under specific conditions indicated that they had multi-lineage differentiation potential. Therefore these results proved that the cells we obtained from Wharton's jelly were human umbilical cord mensenchymal stem cells (hUCMSCs). Using immunocytochemistry and Western blotting analysis, we found that after treatment with neuronal induction medium [NIM; consisting of brain-derived neurotrophic factor (BDNF) and low-serum media] for 14 days, hUCMSCs expressed a neuronal specific marker, microtubule associated protein 2 (MAP2), and extended neurite-like processes. After treatment with NIM, supplemented with hippocampal cholinergic neurostimulating peptide (HCNP) or rat denervated hippocampal extract [rDHE; derived from rat fimbria fornix (FF) transected hippocampus], hUCMSCs expressed choline acetytransferase (ChAT) and this action could be enhanced when cells were cultured with NIM, supplemented with HCNP and rDHE in combination. ELISA showed that these ChAT-positive cells could secrete acetylcholine (ACh). These findings indicate that hUCMSCs possess the potential of differentiation into functional ChAT-positive cells in vitro and provide a new candidate of cells for the cell transplantation to treat Alzheimer's disease (AD).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app