Add like
Add dislike
Add to saved papers

Early bond strength to low-pressure sandblasted zirconia: evaluation of a self-adhesive cement.

The debonding of a densely sintered zirconia prosthesis is a clinically reported, and undesirable event. A standardized, affordable adhesive cementation protocol for zirconia-based restorations is not yet available. The aim of this investigation was to assess the influence of several surface treatments on the initial shear bond strength of self-adhesive resin cement to densely sintered zirconia ceramic. Thirty densely sintered zirconia cylinders were divided into three groups (n = 10). Each of them received a different surface treatment: control (No_T), with the zirconia surface unconditioned; low pressure air abrasion (Sand_S) (50 µm, 1 bar); and standardized air abrasion (Sand_H) (50 µm, 2.8 bar). Three more surface-treated only specimens were addressed to scanning electron microscope (SEM) for qualitative observations. After specimen fabrication, self-adhesive cementceramic interface was analyzed using SBS (shear bond strength) test. Mean shear bond strengths (MPa) obtained for Sand_H and Sand_S were 16.24 ± 2.95 and 16.01 ± 2.68, respectively; no statistically significant difference (P = 0.8580) was found between sandblasted groups. Low-pressure air abrasion positively affected the initial self-adhesive cement adhesion to zirconia with respect to the No_T control group; however it did not prevent scratches and the formation of microcracks on the ceramic surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app