Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Linearithmic time sparse and convex maximum margin clustering.

Recently, a new clustering method called maximum margin clustering (MMC) was proposed and has shown promising performances. It was originally formulated as a difficult nonconvex integer problem. To make the MMC problem practical, the researchers either relaxed the original MMC problem to inefficient convex optimization problems or reformulated it to nonconvex optimization problems, which sacrifice the convexity for efficiency. However, no approaches can both hold the convexity and be efficient. In this paper, a new linearithmic time sparse and convex MMC algorithm, called support-vector-regression-based MMC (SVR-MMC), is proposed. Generally, it first uses the SVR as the core of the MMC. Then, it is relaxed as a convex optimization problem, which is iteratively solved by the cutting-plane algorithm. Each cutting-plane subproblem is further decomposed to a serial supervised SVR problem by a new global extended-level method (GELM). Finally, each supervised SVR problem is solved in a linear time complexity by a new sparse-kernel SVR (SKSVR) algorithm. We further extend the SVR-MMC algorithm to the multiple-kernel clustering (MKC) problem and the multiclass MMC (M3C) problem, which are denoted as SVR-MKC and SVR-M3C, respectively. One key point of the algorithms is the utilization of the SVR. It can prevent the MMC and its extensions meeting an integer matrix programming problem. Another key point is the new SKSVR. It provides a linear time interface to the nonlinear kernel scenarios, so that the SVR-MMC and its extensions can keep a linearthmic time complexity in nonlinear kernel scenarios. Our experimental results on various real-world data sets demonstrate the effectiveness and the efficiency of the SVR-MMC and its two extensions. Moreover, the unsupervised application of the SVR-MKC to the voice activity detection (VAD) shows that the SVR-MKC can achieve good performances that are close to its supervised counterpart, meet the real-time demand of the VAD, and need no labeling for model training.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app