JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Modulation of soleus H reflex by spinal DC stimulation in humans.

Transcranial direct current stimulation (tDCS) of the human motor cortex induces changes in excitability within cortical and spinal circuits that occur during and after the stimulation. Recently, transcutaneous spinal direct current stimulation (tsDCS) has been shown to modulate spinal conduction properties, as assessed by somatosensory-evoked potentials, and transynaptic properties of the spinal neurons, as tested by postactivation depression of the H reflex or by the RIII nociceptive component of the flexion reflex in the lower limb. To further explore tsDCS-induced plastic changes in spinal excitability, we examined, in a double-blind crossover randomized study, the stimulus-response curves of the soleus H reflex before, during, at current offset and 15 min after anodal, cathodal, and sham tsDCS delivered at the Th11 level (2.5 mA, 15 min, 0.071 mA/cm(2), 0.064 C/cm(2)) in 17 healthy subjects. Anodal tsDCS induced a progressive leftward shift of the recruitment curve of the soleus H reflex during the stimulation; the effects persisted for at least 15 min after current offset. In contrast, both cathodal and sham tsDCS had no significant effects. This exploratory study provides further evidence for the use of tsDCS as an expedient, noninvasive tool to induce long-lasting plastic changes in spinal circuitry. Increased spinal excitability after anodal tsDCS may have potential for spinal neuromodulation in patients with central nervous system lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app