JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Approximate optimal control design for nonlinear one-dimensional parabolic PDE systems using empirical eigenfunctions and neural network.

This paper addresses the approximate optimal control problem for a class of parabolic partial differential equation (PDE) systems with nonlinear spatial differential operators. An approximate optimal control design method is proposed on the basis of the empirical eigenfunctions (EEFs) and neural network (NN). First, based on the data collected from the PDE system, the Karhunen-Loève decomposition is used to compute the EEFs. With those EEFs, the PDE system is formulated as a high-order ordinary differential equation (ODE) system. To further reduce its dimension, the singular perturbation (SP) technique is employed to derive a reduced-order model (ROM), which can accurately describe the dominant dynamics of the PDE system. Second, the Hamilton-Jacobi-Bellman (HJB) method is applied to synthesize an optimal controller based on the ROM, where the closed-loop asymptotic stability of the high-order ODE system can be guaranteed by the SP theory. By dividing the optimal control law into two parts, the linear part is obtained by solving an algebraic Riccati equation, and a new type of HJB-like equation is derived for designing the nonlinear part. Third, a control update strategy based on successive approximation is proposed to solve the HJB-like equation, and its convergence is proved. Furthermore, an NN approach is used to approximate the cost function. Finally, we apply the developed approximate optimal control method to a diffusion-reaction process with a nonlinear spatial operator, and the simulation results illustrate its effectiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app