Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The differential effects of two sodium channel modulators on the conductive properties of C-fibers in pig skin in vivo.

BACKGROUND: Axonal sodium channels are attractive targets for chronic pain treatment, and recent evidence suggests that specific targeting of the slow inactivation of sodium channels (NaV) might exert analgesic effects. Using a human-like animal model, the pig, we compared changes in the conductive properties of different C-fiber classes on acute administration of lidocaine (nonselective NaV blocker) and lacosamide (selective enhancer of NaV slow inactivation).

METHODS: Single-fiber extracellular recordings from saphenous nerves were performed. We classified C-fibers according to mechanical responsiveness and amount of activity-dependent slowing (ADS) of conduction velocity. Lidocaine (4 mM; 100 μL), lacosamide (4 mM; 100 μL), or saline was injected intradermally at the stimulation site, and changes of fibers' conductive properties were assessed.

RESULTS: Conduction latencies evoked by lidocaine were more prominent in mechanosensitive (5.5%± 2.1%) than in mechano-insensitive nociceptors (2.5% ± 1%), whereas lacosamide increased conduction latencies to a greater extent in the mechano-insensitive (3% ± 1%) than in mechanosensitive C-nociceptors (2% ± 0.9%). Lidocaine, but not lacosamide, increased electrical thresholds in all mechanosensitive, but not in the mechano-insensitive, C-fibers. Lacosamide blocked conduction and, in addition, reduced ADS in mechano-insensitive nociceptors significantly more than in mechanosensitive nociceptors (ΔADS: 2.4% ± 0.5% vs 1.6% ± 0.5%), whereas lidocaine had opposite effects. Saline had no significant effect on the conductive properties of C-fibers.

CONCLUSION: Local application of test compounds in pig skin allows for functional assessment of steady-state and use-dependent modulation of sodium channels in nociceptive and nonnociceptive C-fibers. Increased analgesic specificity might derive from selective enhancement of slow inactivation of sodium channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app