JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Restoration of descending inputs fails to rescue activity following deafferentation of a motor network.

Motor networks such as the pyloric network of the stomatogastric ganglion often require descending neuromodulatory inputs to initiate, regulate, and modulate their activity and their synaptic connectivity to manifest physiologically appropriate output. Prolonged removal of these descending inputs often results in a compensatory response that alters the inputs themselves, their targets, or both. Using the pyloric network of the crab, Cancer borealis, we investigated whether isolation of motor networks would result in alterations that change the responses of these networks to restored modulatory input. We used a reversible block with isotonic sucrose to transiently alter descending inputs into the pyloric network of the crab stomatogastric ganglion. Using this method, we found that blocking neuromodulatory inputs caused a reduced ability for subsequently restored modulatory projections to appropriately generate network output. Our results suggest that this could be due to changes in activity of descending projection neurons as well as changes in sensitivity to neuromodulators of the target neurons that develop over the time course of the blockade. These findings suggest that although homeostatic plasticity may play a critical role in recovery of functional output in a deafferented motor network, the results of these compensatory changes may alter the network such that restored inputs no longer function appropriately.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app