Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

ESTs library from embryonic stages reveals tubulin and reflectin diversity in Sepia officinalis (Mollusca — Cephalopoda).

Gene 2012 May 2
New molecular resources regarding the so-called “non-standard models” in biology extend the present knowledge and are essential for molecular evolution and diversity studies (especially during the development) and evolutionary inferences about these zoological groups, or more practically for their fruitful management. Sepia officinalis, an economically important cephalopod species, is emerging as a new lophotrochozoan developmental model. We developed a large set of expressed sequence tags (ESTs) from embryonic stages of S. officinalis, yielding 19,780 non-redundant sequences (NRS). Around 75% of these sequences have no homologs in existing available databases. This set is the first developmental ESTs library in cephalopods. By exploring these NRS for tubulin, a generic protein family, and reflectin, a cephalopod specific protein family,we point out for both families a striking molecular diversity in S. officinalis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app