Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases.

Sleep 2012 May
STUDY OBJECTIVES: Neuronal histamine shows diurnal rhythms in rodents and plays a major role in the maintenance of vigilance. No data are available on its diurnal fluctuation in humans, either in health or in neurodegenerative disorders such as Parkinson disease (PD), Alzheimer disease (AD), or Huntington disease (HD), all of which are characterized by sleep-wake disturbances.

DESIGN: Quantitative in situ hybridization was used to study the mRNA expression of histidine decarboxylase (HDC), the key enzyme of histamine production in the tuberomammillary nucleus (TMN) in postmortem human hypothalamic tissue, obtained from 33 controls and 31 patients with a neurodegenerative disease-PD (n = 15), AD (n = 9), and HD (n = 8)-and covering the full 24-h cycle with respect to clock time of death.

RESULTS: HDC-mRNA levels in controls were found to be significantly higher during the daytime than at night (e.g., 08:01-20:00 versus 20:01-08:00, P = 0.004). This day-night fluctuation was markedly different in patients with neurodegenerative diseases.

CONCLUSION: The diurnal fluctuation of HDC-mRNA expression in human TMN supports a role for neuronal histamine in regulating day-night rhythms. Future studies should investigate histamine rhythm abnormalities in neurodegenerative disorders.

CITATION: Shan L; Hofman MA; van Wamelen DJ; Van Someren EJW; Bao AM; Swaab DF. Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app