JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas.

The hippocampus, basolateral amygdala and ventromedial prefrontal cortex participate in the extinction of inhibitory avoidance and contextual fear conditioning. We studied the effect of drugs acting on receptors involved in synaptic modulation on extinction of both tasks. The drugs were given bilaterally right after the first of two sessions of extinction in each task through cannulae implanted into the mentioned areas. The doses used are known to influence memory consolidation of the original tasks. Their effects were evaluated on a second extinction session 24h later, and assumed to result from influences on the consolidation of extinction. The glutamate NMDA receptor stimulant d-serine (50 μg/side) and the histamine methyl-transferase inhibitor SKF9188 (12.5 μg/side) enhanced, and the NMDA antagonist amino-phosphonopentanoate (5 μg/side) and the H2 histamine receptor antagonist ranitidine (17.5 μg/side) inhibited, extinction of both tasks regardless of the region into which they were administered. Thus, glutamate NMDA receptors are involved in the consolidation of extinction of both tasks, and histamine H2 receptors modulate that process in all areas studied. Norepinephrine (1 μg/side), the β-adrenoceptor antagonist timolol (1 μg/side), the D1 dopamine receptor agonist SKF38393 (12.5 μg/side) and the D1 antagonist SCH23390 (1.5 μg/side) also affected extinction of both tasks, but their effects varied with the task and with the site of infusion, suggesting that extinction modulation by β- and D1 receptors is more complex. In conclusion, extinction of two different aversive tasks is modulatable by various systems, which bears upon the behavioral and pharmacological treatment of fear-motivated brain disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app