Add like
Add dislike
Add to saved papers

Continuous-flow reactor-based enzymatic synthesis of phosphorylated compounds on a large scale.

Acid phosphatase, an enzyme that is able to catalyze the transfer of a phosphate group from cheap pyrophosphate to alcoholic substrates, was covalently immobilized on polymethacrylate beads with an epoxy linker (Immobeads-150 or Sepabeads EC-EP). After immobilization 70% of the activity was retained and the immobilized enzyme was stable for many months. With the immobilized enzyme we were able to produce and prepare D-glucose-6-phosphate, N-acetyl-D-glucosamine-6-phosphate, allyl phosphate, dihydroxyacetone phosphate, glycerol-1-phosphate, and inosine-5'-monophosphate from the corresponding primary alcohol on gram scale using either a fed-batch reactor or a continuous-flow packed-bed reactor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app