JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Musashi2 is required for the self-renewal and pluripotency of embryonic stem cells.

Recent studies have shown that the RNA binding protein Musashi 2 (Msi2) plays important roles during development. Msi2 has also been shown to be elevated in several leukemias and its elevated expression has been linked with poorer prognosis in these cancers. Additionally, in embryonic stem cells (ESC) undergoing the early stages of differentiation, Msi2 has been shown to associate with the transcription factor Sox2, which is required for the self-renewal of ESC. These findings led us to examine the effects of Msi2 on the behavior of ESC. We determined that ESC express two isoforms of Msi2, the larger canonical isoform (isoform 1) and a shorter, splice-variant isoform (isoform 2). Using multiple shRNA lentiviral vectors, we determined that knockdown of Msi2 disrupts the self-renewal of ESC and promotes their differentiation into cells that express markers associated with mesoderm, ectoderm, and trophectoderm. Moreover, our studies indicate that the extent of differentiation and the loss of self-renewal capacity correlate with the levels to which Msi2 levels were decreased. We extended these findings by engineering ESC to inducibly express either Msi2 isoform1 or isoform 2. We determined that ectopic expression of Msi2 isoform 1, but not isoform 2, enhances the cloning efficiency of ESC. In addition, we examined how Msi2 isoform 1 and isoform 2 affect the differentiation of ESC. Interestingly, ectopic expression of either Msi2 isoform 1 or isoform 2 does not affect the pattern of differentiation induced by retinoic acid. Finally, we show that ectopic expression of either isoform 1 or isoform 2 is not sufficient to block the differentiation that results from the knockdown of both isoforms of Msi2. Thus, it appears that both isoforms of Msi2 are required for the self-renewal of ESC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app