JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Critical role of TRPC1-mediated Ca²⁺ entry in decidualization of human endometrial stromal cells.

Decidualization is an ovarian steroid-induced remodeling/differentiation process of uterus essential for embryo implantation and placentation. Here, we investigated the possible involvement of enhanced Ca²⁺ dynamics in the decidualization process in human endometrial stromal cells (hESC) in its connection with a recently emerging nonvoltage-gated Ca²⁺ entry channel superfamily, the transient receptor potential (TRP) protein. Combined application of 17β-estradiol (E₂) (10 nM) and progesterone (P₄) (1 μM) for 7-14 d resulted in morphological changes of hESC characteristic of decidualization (i.e. cell size increase), whereas sole application of E₂ exerted little effects. A 7- to 14-d E₂/P₄ treatment greatly increased the expression level of decidualization markers IGF binding protein-1 (IGFBP-1) and prolactin and also up-regulated the expression of TRPC1, a canonical TRP subfamily member that has been implicated in store-operated Ca²⁺ influx (SOC) in other cell types. In parallel with this up-regulation, SOC activity in hESC, the nuclear translocation of phosphorylated cAMP responsive element binding protein (p-CREB) and the expression of Forkhead box protein 01 were enhanced significantly. Small interfering RNA knockdown of TRPC1 counteracted the E₂/P₄-induced up-regulation of IGFBP-1 and prolactin and enhancement of SOC activity together with the inhibition of hESC size increase, p-CREB nuclear translocation, and FOXO1 up-regulation. Coadministration of SOC inhibitors SK&F96365 or Gd³⁺ with E₂/P₄ also suppressed the up-regulation of IGFBP-1 and hESC size increase. Similar inhibitory effects were observed with extracellularly applied TRPC1 extracellular loop 3-directed antibody, which is known to bind a near-pore domain of TRPC1 channel and block its Ca²⁺ transporting activity. These results strongly suggest that up-regulation of TRPC1 protein and consequent enhancement of SOC-mediated Ca²⁺ influx may serve as a crucial step for the decidualization process of hESC probably via p-CREB-dependent transcriptional activity associated with FOXO1 activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app