JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression and role of receptor 1 for orexins in seminiferous tubules of rat testis.

Orexins (OxA and OxB) and their receptors (Ox1R and Ox2R), originally detected in the hypothalamus, have also been localized in multiple cerebral areas and peripheral organs. Thus, in addition to their central function in the regulation of food intake, arterial blood pressure, heart rate, sleep/wake cycle, sexual behaviour, arousal, and hypothalamic/hypophyseal axis, these neuropeptides may exert a local action in various peripheral organs and tissues. Emerging evidence suggests a main role of OxA and its highly specific receptor Ox1R in the male genital tract of mammals. We previously demonstrated OxA localization in Sertoli cells and spermatids of rat testis. Here, we show positive stainings of Ox1R in developing spermatocytes, and spermatids of rat testis by immunohistochemistry. The expression of Ox1R mRNA and the protein in the tissue was also established by reverse-transcription polymerase chain reaction and Western blotting respectively. The addition of OxA to fresh testis slices significantly increased testosterone (T) secretion which, conversely, was inhibited by Mullerian inhibiting substance (MIS). The sequential treatment of testis samples with the two substances highlighted an antagonizing activity of OxA versus MIS in regulating T levels. Furthermore, the stimulating effect on T production by OxA was prevented by the addition of the selective Ox1R inhibitor SB-408124. Overall, our findings suggest that locally secreted OxA interacting with Ox1R activates signals which antagonize MIS action in the control of T levels in mammalian testis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app