Add like
Add dislike
Add to saved papers

Structure-based design, synthesis, molecular docking, and biological activities of 2-(3-benzoylphenyl) propanoic acid derivatives as dual mechanism drugs.

PURPOSE: 2-(3-benzoyl phenyl)propanohydroxamic acid (2) and 2-{3-[(hydroxyimino)(phenyl)methyl]phenyl}propanoic acid (3) were synthesized from non-steroidal anti-inflammatory drug, ketoprofen as dual-mechanism drugs.

MATERIALS AND METHODS: Structures of the synthesized compounds were established by IR, (1)H NMR, and mass spectroscopy. Both compounds were screened for their anti-inflammatory activity in rat paw edema model and in vitro antitumor activity against 60 human tumor cell lines. Flexible ligand docking studies were performed with different matrix metalloproteinases and cyclooxygenases to gain an insight into the structural preferences for their inhibition.

RESULTS: Compound (2) proved out to be more potent than ketoprofen in rat paw edema model. Both compounds showed moderate anticancer activity ranging from 1% to 23% inhibition of growth in 38 cell lines of 8 tumor subpanels at 10 μM concentration in a single dose experiment. Hydroxamic acid analogue was found to be more potent than ketoximic analogue in terms of its antitumor activity.

CONCLUSION: Analysis of docking results together with experimental findings provide a good explanation for the biological activities associated with synthesized compounds which may be fruitful in designing dual-target-directed drugs that may inhibit cyclooxygenases and MMPs for the treatment of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app