Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dermatan sulfate is involved in the tumorigenic properties of esophagus squamous cell carcinoma.

Cancer Research 2012 April 16
Extracellular matrix, either produced by cancer cells or by cancer-associated fibroblasts, influences angiogenesis, invasion, and metastasis. Chondroitin/dermatan sulfate (CS/DS) proteoglycans, which occur both in the matrix and at the cell surface, play important roles in these processes. The unique feature that distinguishes DS from CS is the presence of iduronic acid (IdoA) in DS. Here, we report that CS/DS is increased five-fold in human biopsies of esophagus squamous cell carcinoma (ESCC), an aggressive tumor with poor prognosis, as compared with normal tissue. The main IdoA-producing enzyme, DS epimerase 1 (DS-epi1), together with the 6-O- and 4-O-sulfotransferases, were highly upregulated in ESCC biopsies. Importantly, CS/DS structure in patient tumors was significantly altered compared with normal tissue, as determined by sensitive mass spectrometry. To further understand the roles of IdoA in tumor development, DS-epi1 expression, and consequently IdoA content, was downregulated in ESCC cells. IdoA-deficient cells exhibited decreased migration and invasion capabilities in vitro, which was associated with reduced cellular binding of hepatocyte growth factor, inhibition of pERK-1/2 signaling, and deregulated actin cytoskeleton dynamics and focal adhesion formation. Our findings show that IdoA in DS influences tumorigenesis by affecting cancer cell behavior. Therefore, downregulation of IdoA by DS-epi1 inhibitors may represent a new anticancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app