JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A potencial theranostic agent for EGF-R expression tumors: (177)Lu-DOTA-nimotuzumab.

In this work Nimotuzumab (monoclonal antibody, recognizes the EGF-R) was radiolabeled with (177)Lu as a potential cancer therapy radiopharmaceutical. In-vitro cell binding studies and in-vivo biodistribution and imaging studies were performed to determine the radiochemical stability, targeting specificity and pharmacokinetics of the (177)Lu-labeled antibody. Nimotuzumab was derivatized with DOTA-NHS at room temperature for 2 hours. DOTA-Nimotuzumab was radiolabeled with (177)LuCl3 (15 MBq/mg) at 37°C for 1 h. The radiochemical purity was assessed by ITLC, silica gel and by RP-HPLC. Binding specificity studies were performed with EGF-R positive A431 human epithelial carcinoma and EGF-R negative MDA-MB-435 breast carcinoma cells. Biodistribution studies were performed in healthy female CD-1 mice at 1 h, 4 h, 24 h, and A431 xenografted nude mice at 10 min, 1 h, 4 h, 24 h, 48 h, and 96 h. SPECT-CT imaging studies were performed in A431 xenografted mice at 24 h post injection. DOTA-Nimotuzumab was efficiently labeled with (177) LuCl(3) at 37°C. The in vitro stability of labeled product was optimal over 24 h in buffered saline and mouse serum. Specific recognition of EGF-R by (177)Lu-DOTA-Nimotuzumab was observed in A431 cell binding studies. Biodistribution studies demonstrated increasing tumor uptake of (177)Lu-DOTA-Nimotuzumab over time, with tumor to muscle ratios of 6.26, 10.68, and 18.82 at 4 h, 24 h, and 96 h post injection. Imaging of A431 xenografted mice showed high uptake in the tumor. (177)Lu-DOTA-Nimotuzumab has the potential to be a promising therapy agent, which may be useful in the treatment of patients with EGF-R positive cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app